

Санкт-Петербургский государственный педиатрический медицинский университет

АНЕСТЕЗИЯ И ПЛОД

Александрович Ю.С.

Кафедра анестезиологии, реаниматологии и неотложной педиатрии ФП и ДПО

влияет ли БОЛЕВОЙ СИНДРОМ в родах и

тактика его устранения на развитие ребенка?

РАЗВИТИЕ ПЛОДА И НОВОРОЖДЕННОГО РЕБЕНКА

Развитие - процесс, направленный на изменение материальных и духовных объектов с целью их усовершенствования.

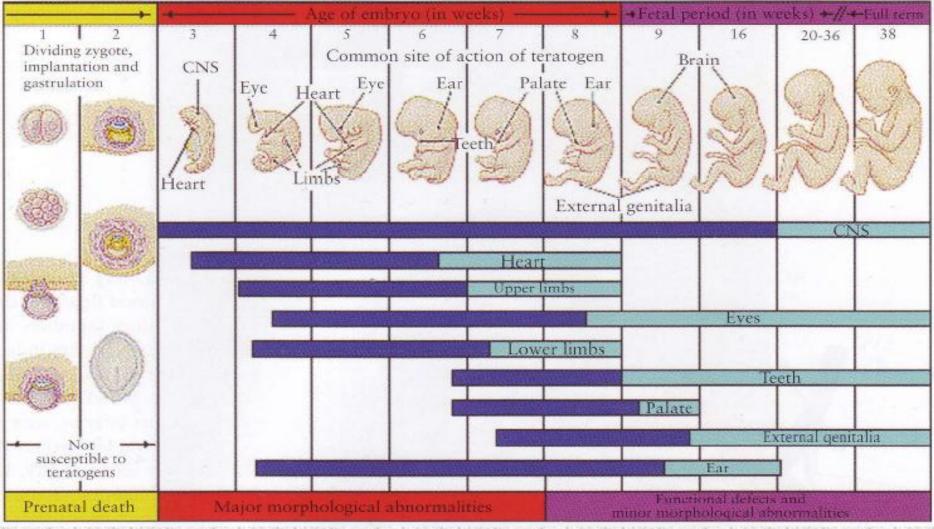
Развитие человека включает в себя четыре обязательных составляющих:

- 1. Физическое развитие
- 2. Моторное развитие
- 3. Когнитивное и психическое развитие
- 4. Социальное развитие

Александрович Ю.С. Психомоторное развитие детей, перенесших оперативные вмешательства и интенсивную терапию в периоде новорожденности. - Автореферат кандидатской диссертации.- СПб.-1994, 23 с.

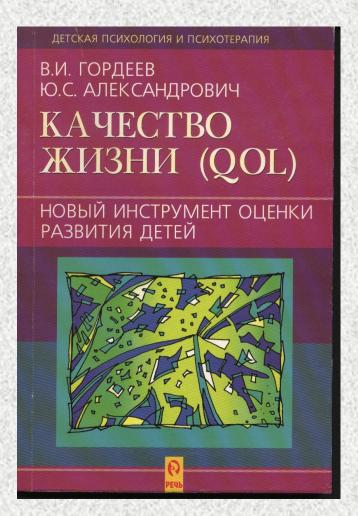
МЕТОДЫ ОЦЕНКИ РАЗВИТИЯ НОВОРОЖДЕННОГО

- **Brazelton T.B.** et al., (1973) неонатальная поведенческая оценочная шкала Бразелтона (*Brazelton Neonatal Behavioral Assessment Scale / NBAS*) тест для оценки неврологического статуса новорожденного по его поведенческим реакциям на внешние стимулы.
- Scanlon J.W. et al., (1974) шкала нейроповеденческой оценки ENNS (Early Neonatal Neurobehavioral Scale). Изначально она была предназначена для определения влияния эпидуральной анестезии в родах на плод.
- **Dubowitz L., Dubowitz V.** (1981-2005) Neurological Assessment of the Preterm and Full-term Newborn Infant. Предусматривает оценку, с учетом гестационного возраста, в баллах.
- Amiel-Tison C. et al., (1982) шкала NACS (Neurologic and Adaptive Capacity Score).
- Amiel-Tison C. et al., (2002) шкала Amiel-Tison Neurological Assessment at Term (ATNAT).


ОЦЕНКА НЕРВНО-ПСИХИЧЕСКОГО СТАТУСА НОВОРОЖДЕННОГО

PEБЕНКА — **ШКАЛА NACS** (Amiel-Tison C. et al., A new neurologic and adaptive capacity scoring system for evaluating obstetric medications in full-term newborns. Anesthesiology. 1982;56(5):340-50).

- 1. Адаптационная способность (реакция на звук, привыкание к звуку, реакция на свет, реакция на свет, успокоение);
- 2. Пассивный тонус (симптом шарфа, приведение в локте, угол тазобедренного сустава, приведение в коленях);
- 3. Активный тонус (активное сокращение сгибателей и разгибателей шеи, хватательный рефлекс, сила сцепления, реакция отталкивания);
- **4. Безусловные рефлексы** (автоматической походки, Моро, сосание);
- **5.** *Общий неврологический статус* (сознание, крик, моторная активность).


Каждый признак оценивался 0-2 баллов; Максимальная оценка — 40 баллов.

РАЗВИТИЕ ПЛОДА И НОВОРОЖДЕННОГО РЕБЕНКА

Физическое развитие — комплекс морфофункциональных свойств организма, который определяет запас его физических сил.

РАЗВИТЕ РЕБЕНКА = КАЧЕСТВО ЖИЗНИ

- Более 95% новорожденных, которые имеют церебральные повреждения, доживают до взрослой жизни, и у многих из них в дальнейшем сохраняются двигательные или познавательные дефициты.
- Много болезней у взрослых обусловлены внутриутробными и интранатальными механизмами, которые лежат в основе уязвимости развивающейся ЦНС к разнообразным влияниям. Адекватная терапия церебральных повреждений в интранатальном периоде может существенно повлиять на физический, соматический и психосоциальный статус

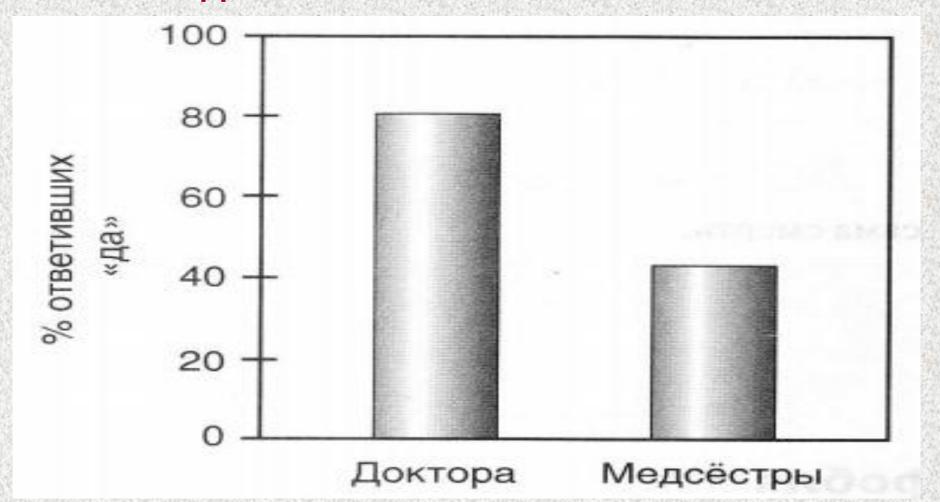
В Дальнейшем. (Barker D.J. Fetal origins of cardiovascular disease. Ann Med 1999;31:Suppl 1:3-6).

влияет ли БОЛЕВОЙ СИНДРОМ в родах и

тактика его устранения на развитие ребенка?

ЧТО ТАКОЕ БОЛЬ?

- Боль более ужасный властитель человечества, чем сама смерть (Альбер Швейцер)
- Боль неприятный сенсорный и эмоциональный опыт, связанный с фактическим или потенциальным повреждением тканей


(International Association for the Study of Pain, 1979)

ЭПИДЕМИОЛОГИЯ БОЛИ

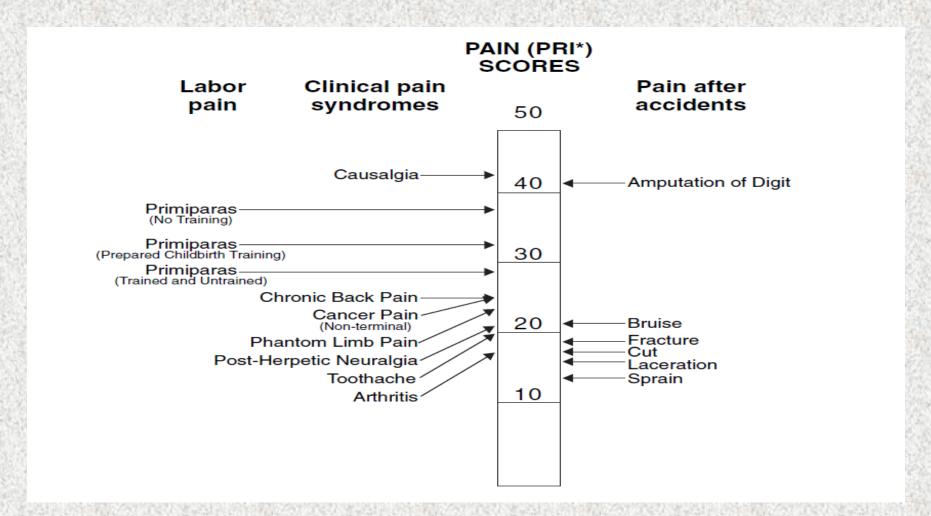
- 90 % всех заболеваний связано с болью
- от 7 до 64% населения периодически испытывают чувство боли
- 33-75% пациентов жалуются на среднюю и сильную боль в операционной ране сразу после пробуждения при использовании общей анестезии, несмотря на проводимую в послеоперационном периоде обезболивающую терапию (Ferrante F.M., VadeBoncouer T.R., 1998; Wolman R.L., Shapiro J.H., 1991).

«Боль, как и кровотечение, убивает человека" (Г. Дюпюитрен)

АКТУАЛЬНОСТЬ или «ЯВЛЯЕТСЯ ЛИ ДИАЗЕПАМ АНАЛЬГЕТИКОМ?»

Марино П.Л. Интенсивная терапия. Пер. с англ. под общей редакцией А.П. Зильбера. – М.: ГЭОТАР-Медиа, 2010. – 768 с.

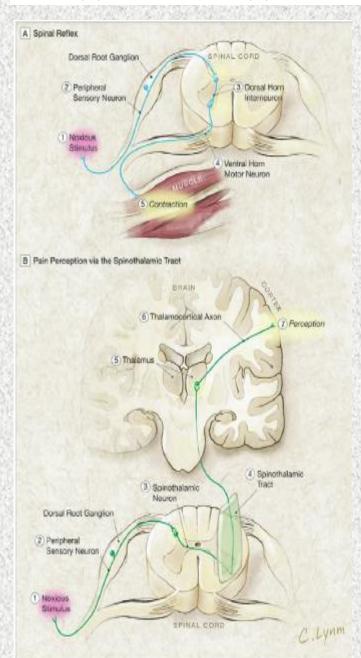
БОЛЬ В РОДАХ: МАТЬ И РЕБЕНОК



«Жене сказал: умножая умножу скорбь твою в беременности твоей; в болезни будешь рождать детей»

ВЛИЯНИЕ РОДОВОЙ БОЛИ НА МАТЬ И НОВОРОЖДЕННОГО РЕБЕНКА

Сравнительная оценка боли различного генеза по данным анкетного болевого опросника McGill



Melzack R. The myth of painless childbirth [The John J. Bonica Lecture]. Pain.

КОГДА НОВОРОЖДЕННЫЙ РЕБЕНОК НАЧИНАЕТ ЧУВСТВОВАТЬ БОЛЬ?

- 6 неделя гестации формируются межнейрональные связи между клетками дорсальных рогов мозгового ствола
- 8-14 неделя гестации начинается синтез большинства нейропептидов и других веществ, являющихся нейротрансмиттерами боли. Плод реагирует на болевые раздражители, в ответ на боль удаляется от источника раздражения (Gupta R. et al., 2008; Salihagić Kadić, A., Predojević, M., 2012).
- 12-26 неделя гестации в нейронах начинает синтезироваться субстанция Р
- С 18 недель гестации отмечаются изменения мозгового кровотока в ответ на инвазивные манипуляции (Tran K.M., 2010).
- К 20 неделе гестации имеются все чувствительные болевые рецепторы. В ответ на стресс отмечается увеличение концентрации норадреналина и кортизола в плазме крови (Tran K.M., 2010; Rollins M.D., Rosen M.A., 2012).

КОГДА НОВОРОЖДЕННЫЙ РЕБЕНОК НАЧИНАЕТ ЧУВСТВОВАТЬ БОЛЬ?

К 24 неделе гестации окончательно сформированы все болевые рецепторы и развиты все синаптические связи в коре головного мозга.

28-30 неделя гестации - сформированы все физиологические механизмы (полная афферентных миелинизация нервных созревание коры волокон, И формирование подкорковых структур, синаптических связей между афферентными эфферентными И волокнами спинного мозга), нервными болевую отвечающие **3a** чувствительность.

ПЛОД и НОВОРОЖДЕННЫЙ ЧУВСТВУЮТ БОЛЬ!

- 1. Боль, перенесенная в перинатальном периоде может стать причиной когнитивной дисфункции и нарушений социальной адаптации

Mark A. Rosen, "Anesthesia for Fetal Surgery and Other Intrauterine Procedures," in Chesnut's Obstetric Anesthesia: Principles and Practice, ed. David H. Chestnut et al. (Philadelphia: Mosby, 2009), 131-132.

Marc Van de Velde & Frederik De Buck, Fetal and Maternal Analgesia/Anesthesia for Fetal Procedures. Fetal Diagn Ther 31(4) (2012) 201-9.

Последствия боли/стресса у новорожденных

(Mathew P., Mathew J., 2003)

Ближайшие эффекты	Отсроченные эффекты	Отдаленные последствия
-Возбуждение	- Повышение	- Память о боли
- Страх	катаболизма	- Задержка развития
- Нарушения сна и	- Изменение иммунного	- Измененный ответ на
бодрствования	статуса	последующую боль
- Повышение	- Задержка	
потребления кислорода	выздоровления	
- Нарушения	- Нарушение	
вентиляционно-	эмоциональных связей	
перфузионных	- Повышение	
отношений	смертности?	
- Уменьшение		
потребления нутриентов		
- Повышение		
кислотности желудка		
- ВЖК/ПВЛ?		

РЕАКЦИЯ НОВОРОЖДЕННЫХ НА БОЛЬ

Физиологические изменения	 Тахикардия Артериальная гипертензия Тахипноэ Повышение потребности в кислороде Мышечный гипертонус Внутричерепная гипертензия Гипоксемия Коагуляционные нарушения Лабильность температуры тела
Поведенческие изменения	1. Крик 2. Плач 3. Стон 4. Изменения выражения лица (гримаса, раздувание крыльев носа, дрожание подбородка, сморщивание лба, зажмуривание глаз, нахмуривание бровей
Биохимические изменения	1. Повышение секреции/концентрации -кортизола, катехоламинов, глюкагона, гормона роста, ренина, альдостерона, антидиуретического гормона, глюкозы, лактата, пирувата 2. Снижение концентрации инсулина
Анатомические изменения	Мидриаз, гипергидроз, гиперемия или бледность кожи
Движения тела	Сжимание пальцев в кулак, дрожание конечностей, гипертонус конечностей, выгибание спины

ВЛИЯНИЕ БОЛИ НА РАЗВИТИЕ НОВОРОЖДЕННЫХ

Ann Neurol. 2012 Mar;71(3):385-96. doi: 10.1002/ana.22267. Epub 2012 Feb 28.

Procedural pain and brain development in premature newborns.

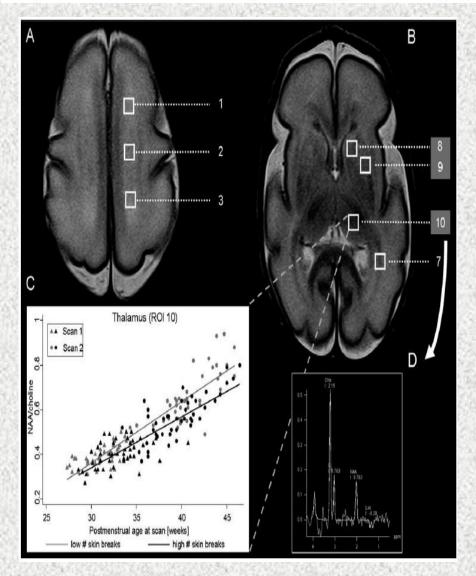
Brummelte S, Grunau RE, Chau V, Poskitt KJ, Brant R, Vinall J, Gover A, Synnes AR, Miller SP.

Developmental Neurosciences and Child Health, Child and Family Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.

Abstract

OBJECTIVE: Preterm infants are exposed to multiple painful procedures in the neonatal intensive care unit (NICU) during a period of rapid brain development. Our aim was to examine relationships between procedural pain in the NICU and early brain development in very preterm infants.

METHODS: Infants born very preterm (N=86; 24-32 weeks gestational age) were followed prospectively from birth, and studied with magnetic resonance imaging, 3-dimensional magnetic resonance spectroscopic imaging, and diffusion tensor imaging: scan 1 early in life (median, 32.1 weeks) and scan 2 at term-equivalent age (median, 40 weeks). We calculated N-acetylaspartate to choline ratios (NAA/choline), lactate to choline ratios, average diffusivity, and white matter fractional anisotropy (FA) from up to 7 white and 4 subcortical gray matter regions of interest. Procedural pain was quantified as the number of skin-breaking events from birth to term or scan 2. Data were analyzed using generalized estimating equation modeling adjusting for clinical confounders such as illness severity, morphine exposure, brain injury, and surgery.

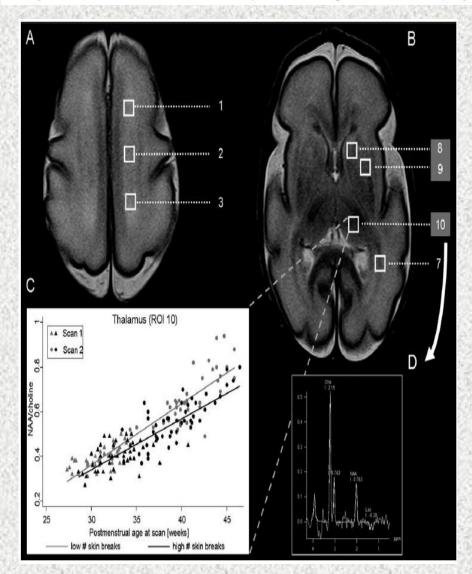

RESULTS: After comprehensively adjusting for multiple clinical factors, greater neonatal procedural pain was associated with reduced white matter FA (β=-0.0002, p=0.028) and reduced subcortical gray matter NAA/choline (β=-0.0006, p=0.004). Reduced FA was predicted by early pain (before scan 1), whereas lower NAA/choline was predicted by pain exposure throughout the neonatal course, suggesting a primary and early effect on subcortical structures with secondary white matter changes.

БОЛЕЗНЕННЫЕ МАНИПУЛЯЦИИ В РАННЕМ НЕОНАТАЛЬНОМ ПЕРИОДЕ МОГУТ ПРИВОДИТЬ К НАРУШЕНИЯМ РАЗВИТИЯ ГОЛОВНОГО МОЗГА

Procedural pain and brain development in premature newborns.

Brummelte S, Grunau RE, Chau V, Poskitt KJ, Brant R, Vinall J, Gover A, Synnes AR, Miller SP.

Developmental Neurosciences and Child Health, Child and Family Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.



Многочисленные болезненные манипуляции сопровождаются уменьшением фракционной белого анизотропии вещества головного мозга и коэффициента N-ацетиласпартат/холин в сером веществе подкорковых ядер $(\beta = -0.0006, p = 0.00).$

Procedural pain and brain development in premature newborns.

Brummelte S, Grunau RE, Chau V, Poskitt KJ, Brant R, Vinall J, Gover A, Synnes AR, Miller SP.

Developmental Neurosciences and Child Health, Child and Family Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.

Уменьшение фракционной анизотропии белого вещества головного мозга было выявлено при первичном исследовании, в время как уменьшение TO коэффициента N-ацетиласпартат/холин сером веществе подкорковых ядер отмечалось течение В всего периода, неонатального ЧТО свидетельствует 0 раннем боли влиянии развитие на структур подкорковых головного мозга.

ВЛИЯНИЕ НЕОНАТАЛЬНОЙ БОЛИ НА РАЗВИТИЕ В ПОСТНАТАЛЬНОМ ПЕРИОДЕ

Pain. 2012 Jul;153(7):1374-81. doi: 10.1016/j.pain.2012.02.007.

Neonatal pain in relation to postnatal growth in infants born very preterm.

Vinall J, Miller SP, Chau V, Brummelte S, Synnes AR, Grunau RE.

Department of Neuroscience, University of British Columbia, Vancouver, BC, Canada.

Болезненные манипуляции ассоциируются с нарушением психического развития у недоношенных новорожденных (срок гестации ≤ 32 недель), однако, этиология этого неизвестна. Целью исследования было установить, влияет ли болевой стресс (повреждения кожи по медицинским показаниям) на постнатальное развитие (вес и окружность головы) в раннем и отдаленном периодах. Обследовано 78 недоношенных новорожденных со сроком гестации ≤ 32 недель. Масса тела и окружность головы были измерены при рождении, в 32 и 40 недель постконцептуального возраста. Увеличение числа болезненных манипуляций коррелировало с низкой массой тела (Wald $\chi(2)=7.36$, P=0.01) и окружностью головы (Wald $\chi(2)=4.36$, P=0.04) в 32 недели постконцептуального возраста и являлось послеродовым фактором риска тяжелого течения заболевания, длительной ИВЛ, развития инфекционного процесса и применения морфина и кортикостероидов. Поздняя инфекция коррелировала с низкой массой тела у доношенных новорожденных (Wald $\chi(2)=5.09$, P=0.02). Повторные болезненные манипуляции, период физиологической нестабильности, оказывают существенное влияние на постнатальный рост и могут стать причиной нарушения развития в более поздние сроки в ОРИТ новорожденных.

ОЦЕНКА ИНТЕНСИВНОСТИ БОЛИ В НЕОНАТАЛЬНОЙ ПРАКТИКЕ

Оценка боли и ответ на обезболивание должны регулярно оцениваться по шкале, подходящей для данной популяции пациентов, и систематически документироваться

(Американский колледж медицины критических состояний; Общество медицины критических состояний. 2002)

Шкалы оценки интенсивности боли у новорожденных детей

шкала	показатели	баллы	достовер- ность	клиническое использование
PIPP	гестационный возраст поведение, ЧСС, SpO2 выражение лица	0-21	>0,93	возможность применения у постели больного
NIPS	выражение лица, движения конечностей, крик, дыхание	0-12	>0,80	возможность применения у постели больного
DAN	выражение лица, плач, движения конечностей	0-10	>0,92	возможность применения у постели больного
DSVNI	выражение лица, движения конечностей, цвет кожи, ЧСС,АД, SpO2	0-8	>0,79	возможность применения у постели больного
CRIES	крик, потребность в О2, ЧСС, АД, выражение лица сон	0-10	>0,72	медсестры предпочитают CRIES другим шкалам

ШКАЛА CRIES

(Krechel S., Bildner J., 1995)

Характеристика	0	1	2
Крик	Нет	Высокого тона	Безутешный
Потребность в кислороде для поддержания SaO ₂ > 95%	Нет	Менее 30%	Более 30%
Витальные показатели	ЧСС и АД не выше, чем до операции	Возросли, но не более чем на 20%	Возросли более чем на 20%
Выражение лица	Спокойное	Гримаса	Угрюмая гримаса
Бессонница	Нет	Частые пробуждения	Не спит

ШКАЛА COVERS

(Hand I.L., at el., 2010)

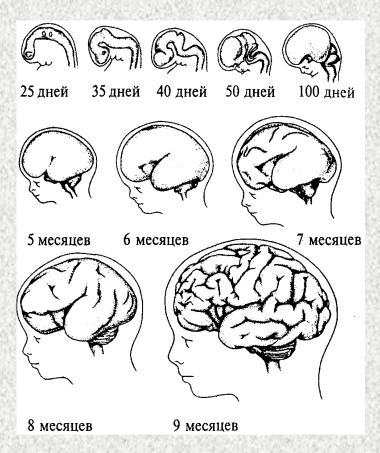
Показатель	0	1	2
Плач	Отсутствует	Высокий тон либо визуально определяемый плач	Истеричный плач, ребенка трудно успокоить
Потребность в кислородотерапии	Отсутствует	<30%	>30%
	Потребление кислорода на базальном уровне	Повышено <20% по отношению к базальному уровню	Повышено >20% по отношению к базальному уровню
	Дыхание не нарушено	Характер дыхания изменен	Выраженное изменение характера дыхания
Жизненно важные функции	ЧСС и/или АД в пределах нормальных значений для возрастной группы либо на базальном уровне	ЧСС и/или АД повышены <20% по отношению к базальному уровню	ЧСС и/или АД повышены >20% по отношению к базальному уровню
	Апноэ и брадикардия отсутствуют, либо частота их находится на базальном уровне	Повышение частоты эпизодов апноэ и брадикардии	Повышение частоты и выраженности эпизодов апноэ и брадикардии
Мимика	Мимика не выражена/мимические мышцы лица расслаблены	Гримаса на лице, незначительное – умеренное напряжение бровей, глаза зажмурены, выражена носогубная складка	Гримаса на лице/хрип, умеренное – выраженное напряжение бровей, глаза зажмурены, выражена носогубная складка
Состояние покоя	Ребенок спит большую часть времени	Ребенок часто просыпается, беспокоится	Ребенок не засыпает (даже если его не беспокоят)
Сигнальные действия, указывающие на наличие дистресса	Ребенок расслаблен	Руки/ноги согнуты либо разогнуты в суставах, ребенок как-бы хочет привлечь к себе внимание, создавая паузы между сериями движений	Патологические движения, выгибание тела


Влияет ли болевой синдром в

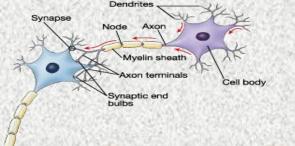
родах и ТАКТИКА ЕГО УСТРАНЕНИЯ на

развитие ребенка?

«ВСЕ КРИТИЧЕСКИЕ БОЛЬНЫЕ ИМЕЮТ ПРАВО НА АДЕКВАТНУЮ АНАЛЬГЕЗИЮ И ЛЕЧЕНИЕ БОЛИ»


МЕТОДЫ УСТРАНЕНИЯ БОЛИ

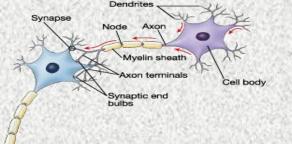
АНАЛЬГЕЗИЯ В РОДАХ


- Психологические методы устранения боли эффективны только в 15-20%
- Методы фармакологического воздействия эффективны только в 35-60%
- Методики периферической регионарной анальгезии:
- Блокада половых нервов;
- Парацервикальная блокада;
- паравертебральная анестезия.
- Нейроаксиальные методики:
- Спинномозговая анестезия (анальгезия);
- Эпидуральная анестезия (анальгезия);
- Комбинированная спинно-эпидуральная анестезия.

КРИТИЧЕСКИЕ ПЕРИОДЫ В РАЗВИТИИ НЕРВНОЙ СИСТЕМЫ ПЛОДА И НОВОРОЖДЕННОГО РЕБЕНКА

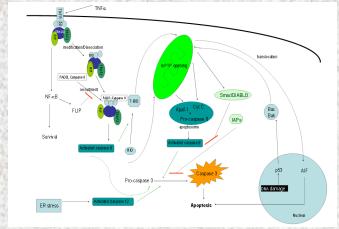
Конец 2-й недели внутриутробного развития — формирование зачатков нервной системы

10-18 неделя внутриутробного развития – максимальная интенсивность деления клеток головного мозга


МЕХАНИЗМЫ ФОРМИРОВАНИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

- 1. Нейрогенез
- 2. Миграция нейронов к месту нахождения
- 3. Синаптогенез
- 4. Миелинизация аксонов

У человека синаптогенез начинается в третьем триместре беременности и рост продолжается до 2-3 лет


Dobbing J, Sands J. The brain growth spurt in various mammalian species. Early Hum Dev 1979;3:79–84

Dekaban AS et al. Ann Neurol 1978

МЕХАНИЗМЫ ФОРМИРОВАНИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

- Апоптоз и нейродегенерация
 - Основные механизмы нормального развития мозга у млекопитающих
 - Изначально нейроны закладываются в большом количестве, ОДНАКО...
 - 50%-70% апоптоз

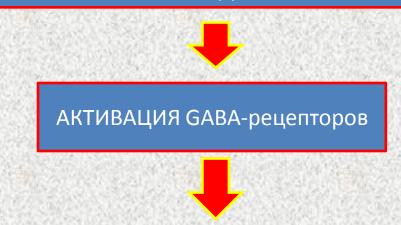
Nijhawan et al. Apoptosis in neural development and disease. Ann Rev Neurosci 2000; Rakic et al. Programmed cell death in the developing human telencephalon. Eur J Neurosci 2000

АНЕСТЕЗИЯ КАК ПРИЧИНА АПОПТОЗА НЕЙРОНОВ

AANA J. 2012 Aug;80(4):291-8.

Anesthesia-induced neuronal apoptosis during synaptogenesis: a review of the literature.

Loftis GK, Collins S, McDowell M.


Western Carolina University, Cullowhee, North Carolina, USA.

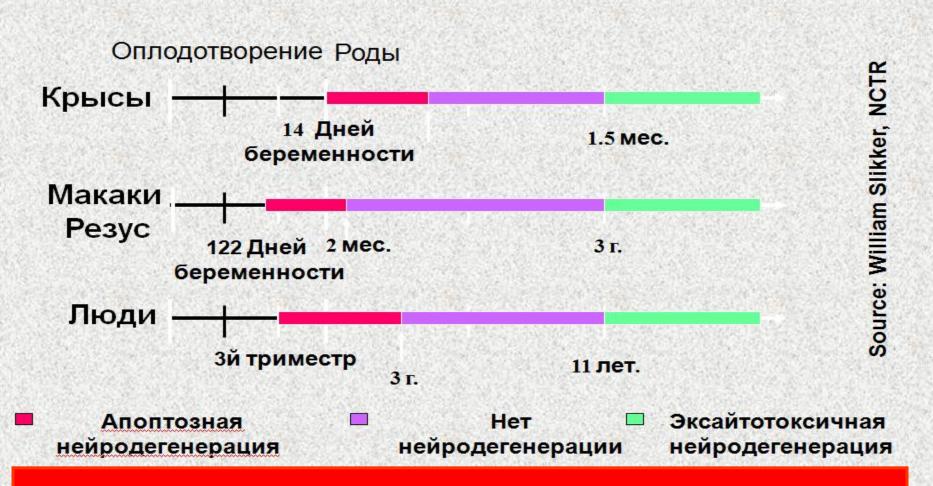
Анестезия, как правило, считается безопасной у большинства взрослых, однако у детей она потенциально опасно в долгосрочной перспективе. Различные анестетики вызывают дегенерацию нейронов при введении новорожденным. Механизм повреждения, обусловлен апоптозом

that neuronal apoptosis occurs when anesthetics are administered to neonatal rodents and primates, and behavioral and cognitive testing from some authors indicate long-term effects persist well into an animal's adulthood. Preliminary human trials reveal a link between anesthesia and subsequent developmental delays. This review of the literature clarifies the need for further research in humans.

АНЕСТЕЗИЯ КАК ТРИГГЕР АПОПТОЗА НЕЙРОНОВ

АНЕСТЕТИК + ПЕРИОД СИНАПТОГЕНЕЗА

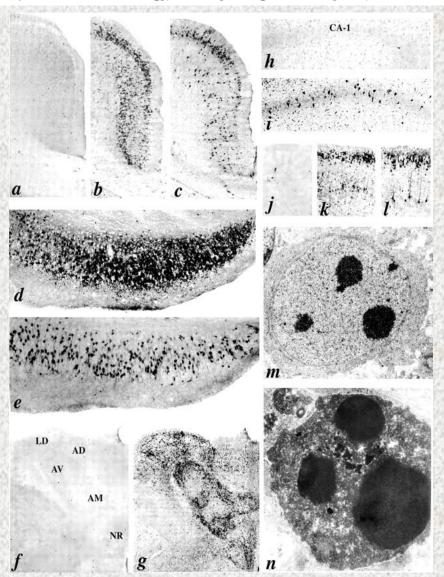
БЛОКИРОВАНИЕ NMDA-рецепторов



УГНЕТЕНИЕ АКТИВНОСТИ НЕЙРОНОВ

АПОПТОЗ НЕЗРЕЛЫХ НЕЙРОНОВ

Критическая стадия чувствительности к нейротоксичному эффекту антагонистов NMDA рецепторов



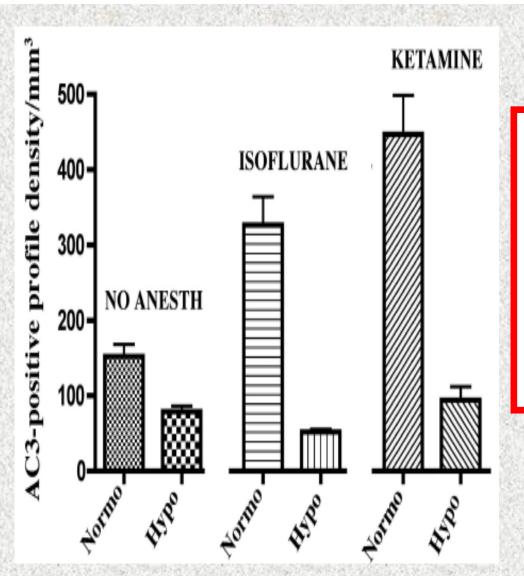
ЧЕЛОВЕК: от 3-ГО ТРИМЕСТРА БЕРЕМЕННОСТИ ДО 3-Х ЛЕТ

Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits.

Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, Olney JW, Wozniak DF.

Department of Anesthesiology, University of Virginia Health System, Charlottesville, Virginia 22908, USA. vj3w@virginia.edu

Новорожденные крысы Экспозиция 6 часов N₂O/O₂ Мидазолам Изофлюран


Дефицит синаптических связей гиппокампа Расстройства памяти, навыков обучения

Anesth Analg. 2010 Feb 1;110(2):442-8. doi: 10.1213/ANE.0b013e3181c6b9ca. Epub 2009 Dec 2.

The young: neuroapoptosis induced by anesthetics and what to do about it.

Creeley CE, Olney JW.

Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri 63110, USA.

Гипотермия уменьшает риск развития апоптоза нейронов

ВЛИЯНИЕ АНЕСТЕЗИИ НА РАНЕЕ НЕРВНО-ПСИХИЧЕСКОЕ РАЗВИТИЕ ДЕТЕЙ

Неврологический исход	Время применения анестетика	Источник данных	Результаты
Трудности в обучении (язык, математика, чтение)	До рождения	Дети, родившиеся в одном и том же году графства Олмстед	Многократные анестезии увеличивают риск трудностей с обучением.
Трудности в обучении (язык, математика, чтение)	0 – 48 месяцев	Дети, родившиеся в одном и том же году графства Олмстед	Непродолжительная анестезия (общая или регионарная) во время операции кесарева сечения не сопровождается риском возникновения трудностей с обучением.
Особенности поведения	0 – 24 месяца	Ретроспективное пилотное исследование у пациентов урологического профиля	Тенденция к неадекватному поведению с увеличением количества анестезий.
Задержка развития, неадекватное поведение, аутизм	0 – 36 месяцев	Медицинская база данных, Нью-Йорк	Грыжесечение, выполненное после 36 месяцев, увеличивает риск расстройств развития.
Успехи в учебе, оценки учителя, поведение	0 – 36 месяцев	Регистр близнецов, Нидерланды	Различий в развитии между близнецами не установлено при проведении анестезии до 36 месяцев.

Lena S. Sun. Labor Analgesia and the Developing Human Brain. Anesthesia and analgesia, 2011. Vol. 112. №6. 1265-1267 p.

Pain. 2009 May;143(1-2):138-46. doi: 10.1016/j.pain.2009.02.014.

Neonatal pain, parenting stress and interaction, in relation to cognitive and motor development at 8 and 18 months in preterm infants.

Grunau RE, Whitfield MF, Petrie-Thomas J, Synnes AR, Cepeda IL, Keidar A, Rogers M, Mackay M, Hubber-Richard P, Johannesen D.

Увеличение болезненных манипуляций, числа сопровождающихся нарушением целостности ассоциировалось со снижением когнитивных способностей и двигательных расстройств, независимо от тяжести состояния ребенка неонатальном периоде, дозы наркотических анальгетиков (морфин) и системных глюкокортикостероидов. Увеличение болезненных манипуляций сопровождалось увеличением длительности искусственной вентиляции легких. частоты применения морфина было связано со Увеличение снижением темпа моторного развития ребенка до 8 месяцев, однако, в 18 месяцев нарушений выявлено не было. Выявлено влияние боли у новорожденных на результаты когнитивного тестирования в 18 месяцев.

Региональная анестезия - метод выбора в акушерской анестезиологии?

Anesthesiology. 2011 Jun;114(6):1325-35. doi: 10.1097/ALN.0b013e31821b5729.

Spinal anesthesia in infant rats: development of a model and assessment of neurologic outcomes.

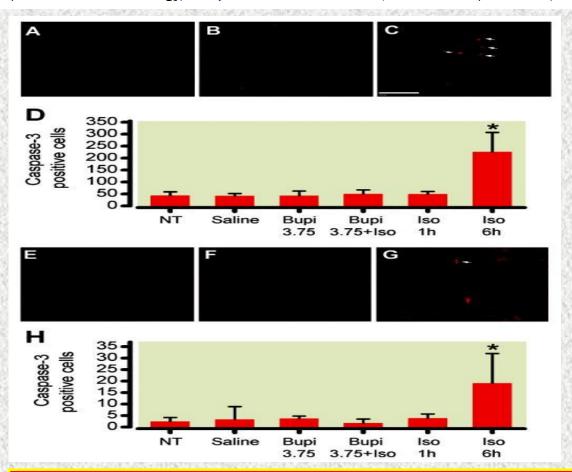
Yahalom B, Athiraman U, Soriano SG, Zurakowski D, Carpino EA, Corfas G, Berde CB.

Department of Anesthesiology, Perioperative and Pain Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA.

Abstract

BACKGROUND: Previous studies in infant rats and case-control studies of human infants undergoing surgery have raised concerns about potential neurodevelopmental toxicities of general anesthesia. Spinal anesthesia is an alternative to general anesthesia for some infant surgeries. To test for potential toxicity, a spinal anesthesia model in infant rats was developed.

METHODS: Rats of postnatal ages 7, 14, and 21 days were assigned to no treatment, 1% isoflurane for either 1 h or 6 h, or lumbar spinal injection of saline or bupivacaine at doses of 3.75 mg/kg (low dose) or 7.5 mg/kg (high dose). Subgroups of animals underwent neurobehavioral testing and blood gas analysis. Brain and lumbar spinal cord sections were examined for apoptosis using cleaved caspase-3 immunostaining. The lumbar spinal cord was examined histologically. Rats exposed to spinal or general anesthesia as infants underwent Rotarod testing of motor performance as adults. Data were analyzed using ANOVA with general linear models, Friedman tests, and Mann-Whitney U tests, as appropriate.


RESULTS: Bupivacaine 3.75 mg/kg was effective for spinal anesthesia in all age groups. Impairments in sensory and motor function recovered in 40-60 min. Blood gases were similar among groups. Brain and spinal cord apoptosis increased in rats receiving 6 h of 1% isoflurane, but not among the oth Спинальная анестезия технически осуществима у новорожденных крысят и безопасна точки зрения нейропапотоза и нейромоторных последствий.

Anesthesiology. 2011 Jun;114(6):1325-35. doi: 10.1097/ALN.0b013e31821b5729.

Spinal anesthesia in infant rats: development of a model and assessment of neurologic outcomes.

Yahalom B, Athiraman U, Soriano SG, Zurakowski D, Carpino EA, Corfas G, Berde CB.

Department of Anesthesiology, Perioperative and Pain Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA.

- 1. Спинальная анестезия бупивакином в дозе 3,75 мг/кг не сопровождается развитием апоптоза и двигательных расстройств
- 2. Кратоковременная ингаляция изофлурана в течение 1 час не оказывает неблагоприятного воздействия на ЦНС, в то время как длительная приводит к развитию нейроапоптоза.

СПИНАЛЬНАЯ АНЕСТЕЗИЯ НЕ ПРИВОДИТ К НЕЙРОАПОПТОЗУ И ДВИГАТЕЛЬНЫМ РАССТРОЙСТВАМ The Journal of International Medical Research 2006; 34: 183 – 192

The Maternal and Neonatal Effects of the Volatile Anaesthetic Agents Desflurane and Sevoflurane in Caesarean Section: a Prospective, Randomized Clinical Study

S KARAMAN¹, F AKERCAN², O ALDEMIR¹, MC TEREK², M YALAZ³ AND V FIRAT¹

TABLE 1: Characteristics of women undergoing elective caesarean section under desflurane or sevoflurane general anaesthesia or epidural anaesthesia

	Desflurane (n = 25)	Sevoflurane $(n = 25)$	Epidural $(n = 25)$
Age (years)	30.7 ± 4.0	28.8 ± 4.3	31.2 ± 4.7
Weight (kg)	74.4 ± 8.7	73.2 ± 8.3	76.0 ± 8.8
Height (cm)	162.8 ± 5.1	163.5 ± 5.4	161.5 ± 5.7
Parity Primiparous Multiparous	13 (52%) 12 (48%)	16 (66.7%) 8 (33.3%)	9 (52.1%) 15 (47.9%)
Gestational age (weeks)	38.2 ± 0.6	38.2 ± 0.6	38.0 ± 0.9
Infant weight (g)	3316.0 ± 258.0	3479.1 ± 378.1	3393.7 ± 457.1
Duration of surgery (min)	52.4 ± 12.7	51.3 ± 9.9	56.7 ± 11.0
Duration of uterine incision to delivery (min)	1.8 ± 1.6	1.7 ± 1.1	1.7 ± 0.9
Duration of induction to delivery (min)	13.3 ± 1.3	13.1 ± 1.2	NA

Values are the mean ± SD or number and percentages.

NA, not applicable.

The Journal of International Medical Research 2006; 34: 183 – 192
The Maternal and Neonatal Effects of the Volatile Anaesthetic Agents Desflurane and Sevoflurane in Caesarean Section: a Prospective, Randomized Clinical Study S KARAMAN¹, F AKERCAN², O ALDEMIR¹, MC TEREK², M YALAZ³ AND V FIRAT¹

ОБЩАЯ АНЕСТЕЗИЯ

Индукция: Тиопентал натрия 5 мг/кг.

Миорелаксация: Сукцинилхолин 1,5 мг/кг, после извлечения плода векуроний.

Поддержание анестезии:

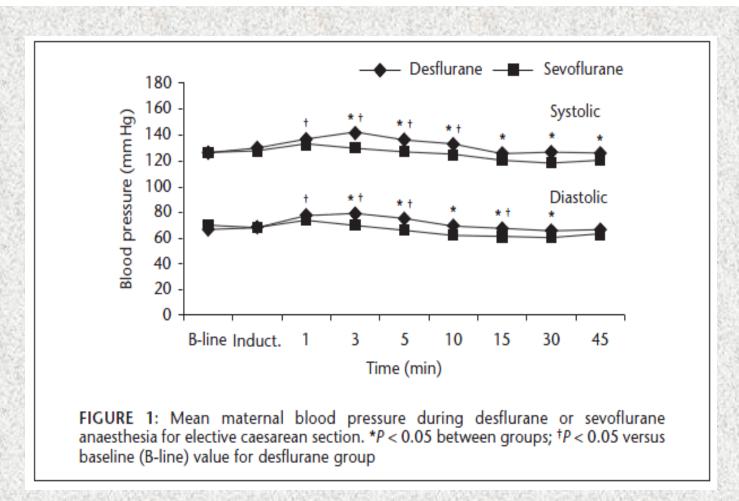
3% десфлуран или 1% севофлуран в сочетании с 50% закиси азота в кислороде. Использовали 0,5 МАК для обоих агентов.

Сразу после извлечения плода фентанил 1-2 мкг/кг.

Вентиляция: ДО 10 мл/кг с ЧД 10 - 14 вдохов/мин для поддержания конце выдоха углекислый газ натяжение 28 - 32 мм рт. ст.

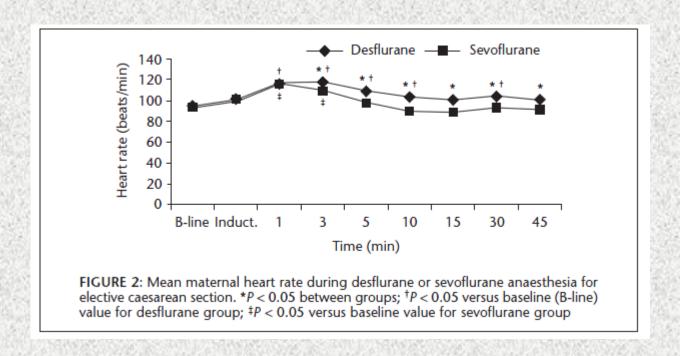
The Journal of International Medical Research 2006; 34: 183 – 192
The Maternal and Neonatal Effects of the Volatile Anaesthetic Agents Desflurane and Sevoflurane in Caesarean Section: a Prospective, Randomized Clinical Study S KARAMAN¹, F AKERCAN², O ALDEMIR¹, MC TEREK², M YALAZ³ AND V FIRAT¹

• РЕГИОНАЛЬНАЯ АНЕСТЕЗИЯ


Иинфузия 1000 -1500 мл раствора лактата Рингера перед эпидуральной анестезией. Использование 18-го калибра иглы Tuohy.

- Эпидуральная блокада на уровне в L_{2-3} или L_{3-4} в положении сидя.
- Тест доза введением 3 мл 10 мг/мл лидокаина с 5 мкг/мл адреналина.
- Через 3 мин, 16 20 мл 0,75% ропивакаина и 100 мкг фентанила, вводили в эпидуральное пространство.
- Гипотония определялась как 20%-ное снижение АД от исходного уровня или снижение систолического АД <100 мм рт. ст. (купировали введением 5-10 мг эфедрина).
- Уровень сенсорного блока оценивали с помощью уколов с 2минутным интервалом в течение 30 минут после эпидуральной инъекции.

The Journal of International Medical Research 2006; 34: 183 – 192


The Maternal and Neonatal Effects of the Volatile Anaesthetic Agents Desflurane and Sevoflurane in Caesarean Section: a Prospective, Randomized Clinical Study

S KARAMAN¹, F AKERCAN², O ALDEMIR¹, MC TEREK², M YALAZ³ AND V FIRAT¹

The Journal of International Medical Research 2006; 34: 183 – 192

The Maternal and Neonatal Effects of the Volatile Anaesthetic Agents Desflurane and Sevoflurane in Caesarean Section: a Prospective, Randomized Clinical Study S KARAMAN¹, F AKERCAN², O ALDEMIR¹, MC TEREK², M YALAZ³ AND V FIRAT¹

The Journal of International Medical Research 2006: 34: 183 – 192

The Maternal and Neonatal Effects of the Volatile Anaesthetic Agents Desflurane and Sevoflurane in Caesarean Section: a Prospective, Randomized Clinical Study S KARAMAN¹, F AKERCAN², O ALDEMIR¹, MC TEREK², M YALAZ³ AND V FIRAT¹

	Десфлуран (n=25)	Севофлуран (n=25)	Эпидуральная* (n=25)		
Общая потеря крови (мл)	782 ± 257	875 ± 265	835 ± 269		
Гематокрит преоперационно (%)	37.9 ± 2.1	36.7 ± 2.6	36.7 ± 2.6		
Гематокрит послеперационно (%)	35.8 ± 2.8	34.8 ± 2.7	33.7 ± 3.5		
«Дельта» гематокрита (%)	-2.4 ± 2.3	-2.8 ± 3.1	-3.1 ± 2.9		
Средние значение ± стандартное отклонение					

The Journal of International Medical Research 2006; 34: 183 – 192

The Maternal and Neonatal Effects of the Volatile Anaesthetic Agents Desflurane and Sevoflurane in Caesarean Section: a Prospective, Randomized Clinical Study

S KARAMAN¹, F AKERCAN², O ALDEMIR¹, MC TEREK², M YALAZ³ AND V FIRAT¹

TABLE 4:
Neonatal outcomes in infants born to women undergoing elective caesarean section under desflurane or sevoflurane general anaesthesia or epidural anaesthesia

	Desflurane (n = 25)	Sevoflurane $(n = 25)$	Epidural (<i>n</i> = 25)
Apgar scores			
1 min	9 (8 – 10)	9 (8 – 9)	9 (9 – 10)
5 min	10 (9 – 10)	9 (10 – 10)	10 (10 – 10)
NACS ≤ 35			
2 h	7 (28%)	8 (32%)	8 (32%)
24 h	0 (0%)	1 (4%)	1 (4%)
NACS			
2 h	34.3 ± 2.1	34.3 ± 2.8	33.8 ± 3.4
24 h	37.7 ± 1.4	37.3 ± 1.8	37.4 ± 2.1

Apgar scores are given as median (range). NACS \leq 35 values are number and percentages. NACS values are the mean \pm SD.

NACS, neurological adaptive capacity score.

The Journal of International Medical Research 2006; 34: 183 – 192
The Maternal and Neonatal Effects of the Volatile Anaesthetic Agents Desflurane and Sevoflurane in Caesarean Section: a Prospective, Randomized Clinical Study S KARAMAN¹, F AKERCAN², O ALDEMIR¹, MC TEREK², M YALAZ³ AND V FIRAT¹

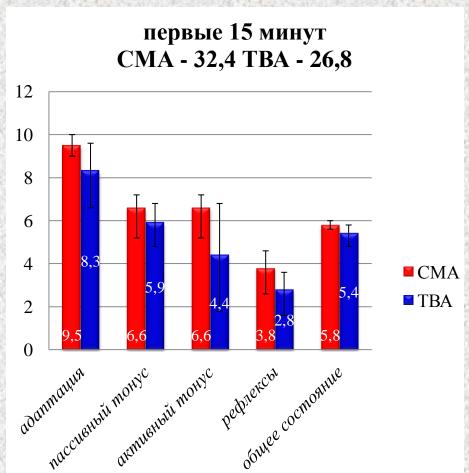
- Использование современных ингаляционных анестетиков севофлурана и десфлдурана было так же безопасно с точки зрения влияния на плод, как использование эпидуральной анестезии ропивакаином
- Десфлуран достоверно больше повышал
 АД и ЧСС матери, чем севофлуран

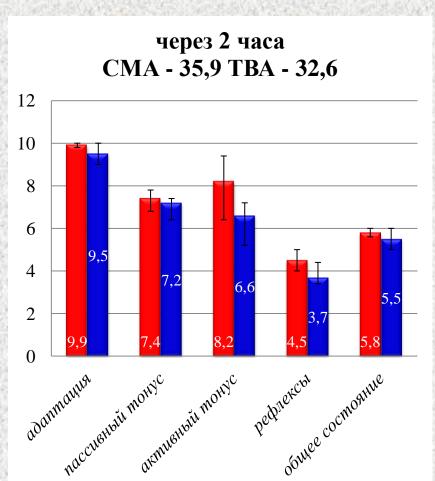
ВЛИЯНИЕ МЕТОДИКИ АНЕСТЕЗИИ НА ПСИХОНЕВРОЛОГИЧЕСКИЙ СТАТУС НОВОРОЖДЕННОГО

Группа Показатель	CMA (n=62)	TBA (n=60)	Р
Возраст, лет	29,9 (26,0-35,0)	30,1 (26,5-34,0)	0,79
Вес женщины, кг	82,5 (71,0-93,0)	78,1 (67,9-86,8)	0,89
Рост женщины, см	167,0 (164,0-172,0)	164,2 (162,0-168,0)	0,14
Срок беременности, нед	39,5 (39,0-40,0)	39,5 (39,0-39,8)	0,47
Время извлечения, мин	6,5 (5,0-8,0)	6,0 (4,0-7,5)	0,19
Длительность операции, мин	47,0 (40,0-53,0)	49,1 (40,0-55,0)	0,49

Александрович Ю.С., Рязанова О.В., Муриева Э.А., Пшениснов К.В., Михайлов А.В. Влияние анестезии при абдоминальном родоразрешении на неврологический статус новорожденного в раннем неонатальном периоде./ Анестезиология и реаниматология. — 2011. - №1. — С. 15-18.

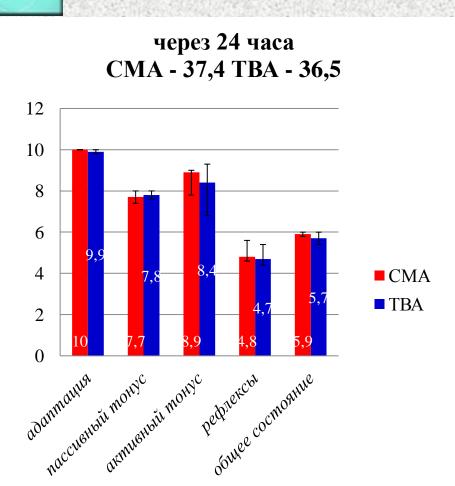
Методика ТВА

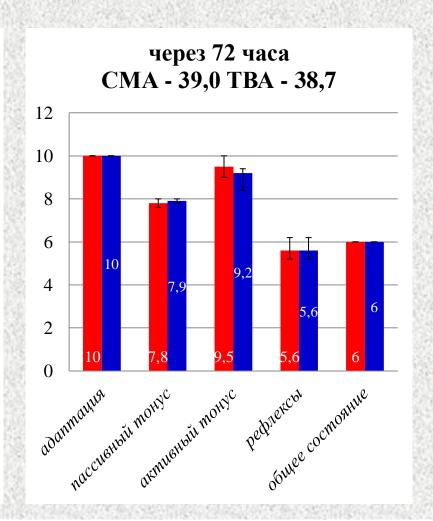

- Премедикацию выполняли на операционном столе после катетеризации периферической вены путем внутривенного введения 0,1% раствора атропина сульфата в дозе 0,01 мг/кг и 1% раствора димедрола в дозе 0,15 мг/кг.
- Индукция анестезии
 - Перед введением анестетика проводили преоксигенацию в течение 3 минут. В/в болюсно 1% p-р тиопентала-натрия в дозе 3-5 мг/кг.
 - Листенон 1,5-2,0 мг/кг. Интубация трахеи. ИВЛ аппаратом "Drager Fabius" в режиме нормовентиляции. Подача газонаркотической смеси кислорода и закиси азота в соотношении 1:1.
- Поддержание анестезии
 - После извлечения плода, 005% p-p фентанила 3-5 мкг/кг, с ингаляцией газонаркотической смеси кислорода и закиси азота в соотношении 1:2. С целью поддержания миоплегии внутривенно болюсно водили «Нимбекс» в дозе 0,1 мг/кг.


Методика СМА

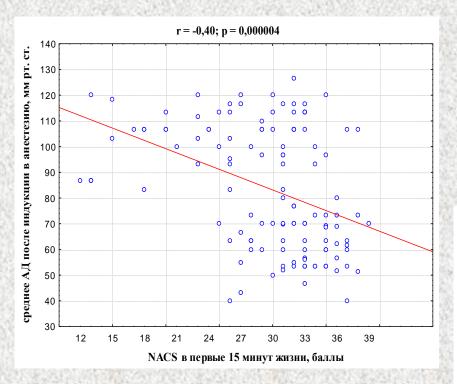
- Периферический венозный доступ. Инфузионная терапия 0,9% р-р натрия хлорида со скоростью 4 мл/кг/час. Форсированную прегидратацию не проводили.
- Субарахноидальное пространство пунктировали иглами типа "Atraucan" и "Pencan" 27G на уровне L_{II} - L_{III} , L_{III} - L_{IV} с использованием интрадьюсера. 2,8-4,0 мл 0,5% «Маркаин® Спинал Хэви» AstraZeneca фракционно.
- Пациентку укладывали на спину, а операционный стол устанавливали с наклоном влево на 30°, матку смещали влево от средней линии и удерживали в этом положении с целью профилактики артериальной гипотензии. Темп инфузии увеличивали до 15 мл/кг/час, объем инфузионной терапии во время анестезии составлял 1100-1600 мл.
- Уровень анестезии оценивали путем проведения булавочного теста со стерильной иглой на потерю болевой чувствительности, а степень моторного блока при помощи шкалы Bromage (Bromage P. R., 1967). Операцию начинали при развитии полного моторного блока.

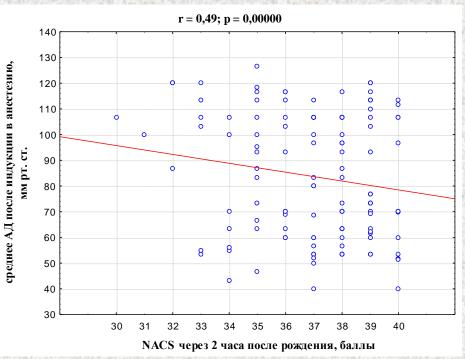
ВЛИЯНИЕ МЕТОДИКИ АНЕСТЕЗИИ НА ПСИХОНЕВРОЛОГИЧЕСКИЙ СТАТУС НОВОРОЖДЕННОГО



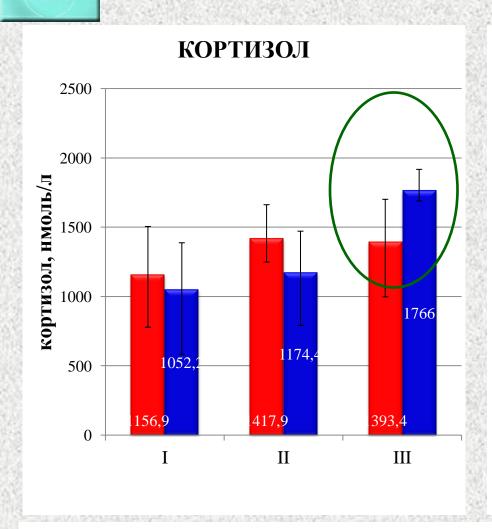


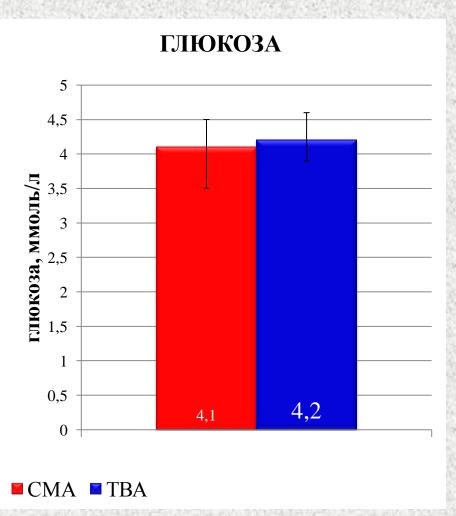
Александрович Ю.С., Рязанова О.В., Муриева Э.А., Пшениснов К.В., Михайлов А.В. Влияние анестезии при абдоминальном родоразрешении на неврологический статус новорожденного в раннем неонатальном периоде./ Анестезиология и реаниматология. — 2011. - №1. — С. 15-18.


ВЛИЯНИЕ МЕТОДИКИ АНЕСТЕЗИИ НА ПСИХОНЕВРОЛОГИЧЕСКИЙ СТАТУС НОВОРОЖДЕННОГО

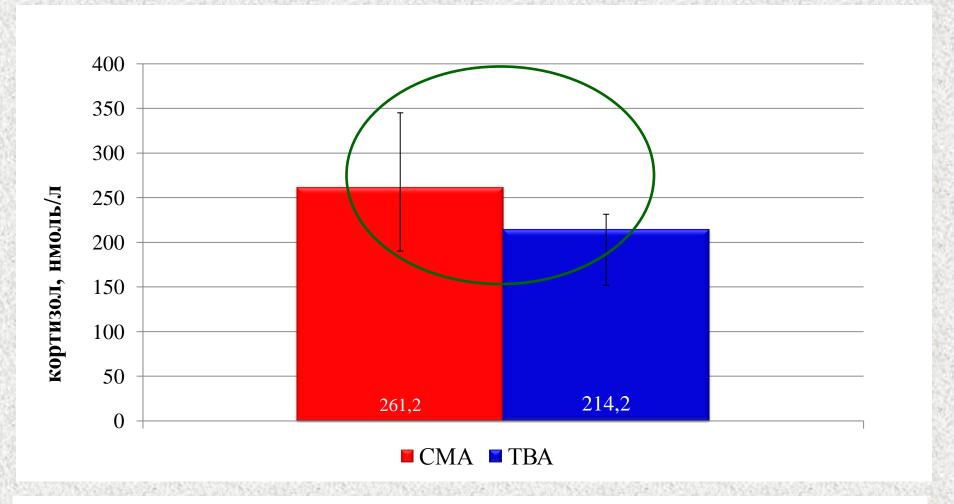


Александрович Ю.С., Рязанова О.В., Муриева Э.А., Пшениснов К.В., Михайлов А.В. Влияние анестезии при абдоминальном родоразрешении на неврологический статус новорожденного в раннем неонатальном периоде./ Анестезиология и реаниматология. — 2011. - №1. — С. 15-18.

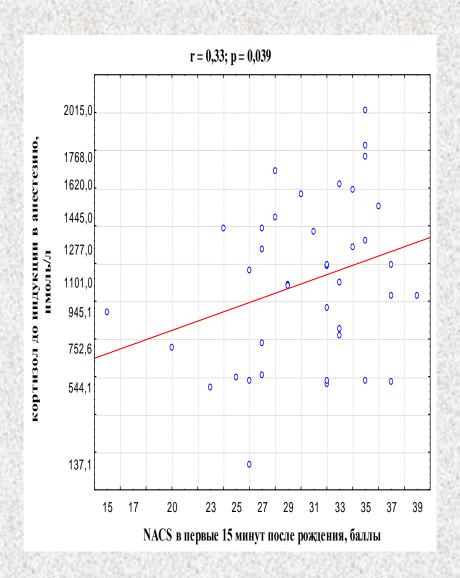

СОСТОЯНИЕ НОВОРОЖДЕННОГО РЕБЕНКА В ЗАВИСИМОСТИ ОТ СРЕДНЕГО АРТЕРИАЛЬНОГО ДАВЛЕНИЯ РОЖЕНИЦЫ

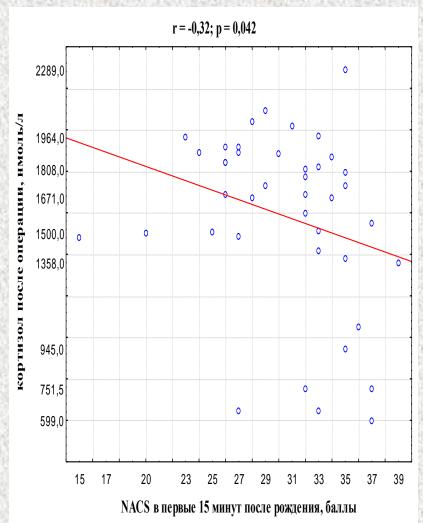


ВЫРАЖЕННОСТЬ РОДОВОГО СТРЕССА У РОДИЛЬНИЦЫ В ЗАВИСИМОСТИ ОТ ИСПОЛЬЗУЕМОЙ МЕТОДИКИ АНЕСТЕЗИИ



Александрович Ю.С., Рязанова О.В., Муриева Э.А., Пшениснов К.В., Михайлов А.В. Влияние анестезии при абдоминальном родоразрешении на неврологический статус новорожденного в раннем неонатальном периоде./ Анестезиология и реаниматология. – 2011. - №1. – С. 15-18.




ВЫРАЖЕННОСТЬ РОДОВОГО СТРЕССА У НОВОРОЖДЕННОГО В ЗАВИСИМОСТИ ОТ ИСПОЛЬЗУЕМОЙ МЕТОДИКИ АНЕСТЕЗИИ

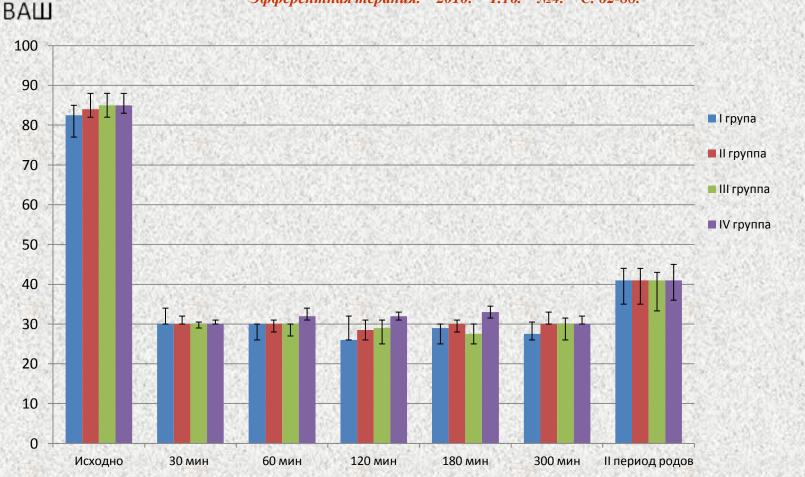
Александрович Ю.С., Рязанова О.В., Муриева Э.А., Пшениснов К.В., Михайлов А.В. Влияние анестезии при абдоминальном родоразрешении на неврологический статус новорожденного в раннем неонатальном периоде./ Анестезиология и реаниматология. — 2011. - №1. — С. 15-18.

СОСТОЯНИЕ НОВОРОЖДЕННОГО РЕБЕНКА В ЗАВИСИМОСТИ ОТ КОНЦЕНТРАЦИИ КОРТИЗОЛА В КРОВИ У РОЖЕНИЦЫ

ВЛИЯНИЕ РЕГИОНАЛЬНОЙ АНЕСТЕЗИИ НА ПСИХОНЕВРОЛОГИЧЕСКИЙ СТАТУС НОВОРОЖДЕННОГО ПОСЛЕ РОЖДЕНИЯ

Александрович Ю.С., Пшениснов К.В., Муриева Э.А., Рязанова О.В. Влияние длительной эпидуральной анальгезии в родах на неврологический статус новорожденного

Эфферентная терапия. – 2010. – Т.16. – №4. – С. 82-88.


Показатели	I группа	II группа	III группа	IV группа
	(n=30)	(n=30)	(n=32)	(n=31)
Возраст, лет	24,5	25,5	24,5	26
	(23–26)	(23–28)	(23–26)	(23–30)
Масса тела, кг	73,3	75,5	73,3	76,5
	(67,0–81,8)	(70–81,3)	(67,2–82,1)	(63,7–86)
Рост, см	167	165,5	168	165
	(162–169)	(164–170)	(163–170)	(160–171)
Прибавка массы	12,5	12,6	12	12
тела, кг	(9,0–16,5)	(10–16)	(8,8–15)	(10–15)

I группа - 0,2% ропивакаин; II группа — 0,1% ропивакаин + 0,005% фентанил, 2 мкг/мл; III группа — 0,2% бупивакаин; IV группа — 0,2% бупивакаин + фентанил, 2 мкг/мл

Оценка выраженности боли по ВАШ при длительной эпидуральной анальгезии во время родов

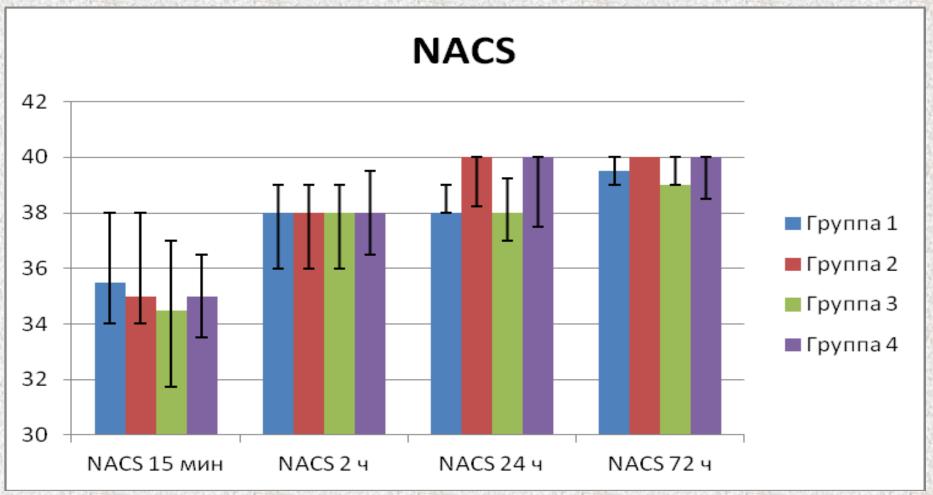
Александрович Ю.С., Пшениснов К.В., Муриева Э.А., Рязанова О.В. Влияние длительной эпидуральной анальгезии в родах на неврологический статус новорожденного Эфферентная терапия. − 2010. − Т.16. − №4. − С. 82-88.

ВЛИЯНИЕ РЕГИОНАЛЬНОЙ АНЕСТЕЗИИ НА ПСИХОНЕВРОЛОГИЧЕСКИЙ СТАТУС НОВОРОЖДЕННОГО ПОСЛЕ РОЖДЕНИЯ

Александрович Ю.С., Пшениснов К.В., Муриева Э.А., Рязанова О.В. Влияние длительной эпидуральной анальгезии в родах на неврологический статус новорожденного
Эфферентная терапия. — 2010. — Т.16. — №4. — С. 82-88.

Пункцию и катетеризацию эпидурального пространства выполняли на уровне L_{II-IV} в положение лёжа на левом боку или сидя после появления регулярной родовой

деятельности и раскрытия маточного зева более чем на 3 см. Для проведения длительной эпидуральной анальгезии использовали катетеры фирмы «B.Braun» («Perifix»), снабженные антибактериальными фильтрами.


- («Реппх»), снаоженные антиоактериальными фильтрами.
 □ Эпидуральный катетер заводили на 3-4 см краниально и фиксировали
 □ Вводили тест-дозу (2% раствора лидокаина, 3 мл)
 □ После исключения субарахноидального или внутрисосудистого введения тест-дозы через 5 минут медленно вводили основную дозу раствора анестетика со скоростью 5 мг каждые 5 минут с проведением перед каждым введением аспирационной пробы.
 □ Обезболивание начинали с болюсного введения в эпидуральное пространство 10 мл анестетика, в дальнейшем при болевой импульсации свыше 30 мм по ВАШ. При необходимости введения очередного болюса анестетика учитывали степень раскрытия маточного зева, приближение второго периода родов, выраженность моторной блокады нижних конечностей и адекватность анальгезии.
- □ Во втором периоде родов дополнительно анестетик не вводили.

ВЛИЯНИЕ РЕГИОНАЛЬНОЙ АНЕСТЕЗИИ НА ПСИХОНЕВРОЛОГИЧЕСКИЙ СТАТУС НОВОРОЖДЕННОГО ПОСЛЕ РОЖДЕНИЯ

Александрович Ю.С., Пшениснов К.В., Муриева Э.А., Рязанова О.В. Влияние длительной эпидуральной анальгезии в родах на неврологический статус новорожденного

Эфферентная терапия. – 2010. – Т.16. – №4. – С. 82-88.

группа - 0,2% ропивакаин; II группа — 0,1% ропивакаин + 0,005% фентанил, 2 мкг/мл; III группа — 0,2% бупивакаин; IV группа — 0,2% бупивакаин + фентанил, 2 мкг/мл

ВЫРАЖЕННОСТЬ СТРЕССА У МАТЕРИ В ЗАВИСИМОСТИ ОТ ИСПОЛЬЗУЕМОГО МЕСТНОГО АНЕСТЕТИКА

Александрович Ю.С., Пшениснов К.В., Муриева Э.А., Рязанова О.В. Влияние длительной эпидуральной анальгезии в родах на неврологический статус новорожденного Эфферентная терапия. — 2010. — Т.16. — №4. — С. 82-88.

Характеристика	І группа	II группа	III группа	IV группа
	(n=30)	(n=30)	(n=32)	(n=31)
Концентрация	2027,5	1863,5	1846,0	1772,5
кортизола перед	(1817,0–2115,0)	(1644,0-1977,5)	(1705,5–2055,5)	(1699,5–1897,0)
анальгезией,				
нмоль/л				
Концентрация	1848,5°+	1683,5°+	1595,5°+	1631,5°+
кортизола через	(1482,0-2042,5)	(1401,0-1858,5)	(1399,0–1874,5)	(1234,5–1677,5)
один час после				
анальгезии, нмоль/л				
Концентрация	1353,5+	1360,0+	1129,0°+	988,8+
кортизола через 24	(930,5-1809,5)	(931,2-1643,0)	(810,9–1519,5)	(735,6–1431,0)
часа после				
рождения ребенка,				
нмоль/л				
Концентра-	$5,4^{a}$	$6,2^{6}$	7,36	5,5
ция глюкозы,	(4,8-5,9)	(5,6-6,8)	(7,1-7,5)	(5,1-6,4)
ммоль/л				

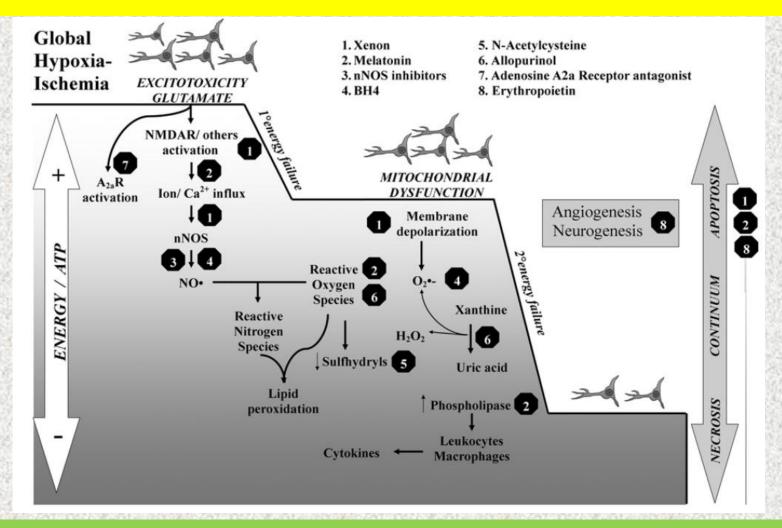
 $^{^{\}circ}$ - значимое (p<0,05) отличие от значений на предыдущем этапе; + - значимое (p<0,05) отличие от значений на исходном этапе; a - значимое (p<0,05) отличие значений между 1 и 3 группами; b - значимое (p<0,05) отличие значений между 2 и 3 группами; b - значимое (p<0,05) отличие значений между 3 и 4 группами.

ВЫРАЖЕННОСТЬ СТРЕССА У МАТЕРИ В ЗАВИСИМОСТИ ОТ ИСПОЛЬЗУЕМОГО МЕСТНОГО АНЕСТЕТИКА

Александрович Ю.С., Пшениснов К.В., Муриева Э.А., Рязанова О.В. Влияние длительной эпидуральной анальгезии в родах на неврологический статус новорожденного Эфферентная терапия. – 2010. – Т.16. – №4. – С. 82-88.

Показатель	І группа	II группа	III группа	IV группа
	(n=30)	(n=30)	(n=32)	(n=31)
Концентрация	430,8	436,4	499,6	482,3
кортизола в	(275,4-	(311,9-498,3)	(393,7-772,6)	(324,2-
пуповинной крови,	969,4)			672,6)
нмоль/л				
Концентрация	4,6 (4,1-	4,5 (4,1-	$6,2(5,4-6,7)^{\partial}$	3,6 (3,2-3,8)
глюкозы в	$4,7)^{a,6}$	$(5,1)^{e,z}$		
пуповинной крови,				
ммоль/л				
Концентрация	3,6 (3,2-4,1)	$3,2(2,9-3,6)^e$	3,9 (3,6-4,4)	3,6 (3,3-4,0)
глюкозы в				
капиллярной крови,				
ммоль/л				

a - значимое (p<0,05) отличие значений между 1 и 3 группами;


 ^{6 -} значимое (p < 0.05) отличие значений между 1 и 4 группами; 6 - значимое (p < 0.05) отличие значений между 2 и 3 группами;

 $[\]epsilon$ - значимое (p<0,05) отличие значений между 2u 4 ϵ группами;

 $[\]delta$ - значимое (p<0,05) отличие значений между 3 и 4 группами; е - значимое (p<0,05) отличие значений между 2 и 3 группами.

 Длительная эпидуральная анальгезия не сопровождается выраженной стрессорной реакций и негативным влиянием на статус новорожденного ребенка.

Исследовательские нейропротективные стратегии для минимизации повреждения мозга у новорожденных

Robertson N.J. et al., Which neuroprotective agents are ready for bench to bedside translation in the newborn infant? J Pediatr. 2012 Apr;160(4):544-52.

Володин Н.Н., Рогаткин С.О., Людовская Е.В. Лечение детей, перенесших перинатальную гипоксию в период ранней неонатальной адаптации //Вопросы гинекологии, акушерства и перинатологии. 2005.-№1.-с.20-25.

- 40 новорожденным вводили реамберин в/в в дозе 5 мл/кг (75 мг/кг/с сукцината натрия) в течение 5 дней.
- Выводы
- Применение инфузионных растворов на основе сукцината натрия оказывают достоверный церебропротекторный эффект у н/р, перенесших перинатальную гипоксию.
- Церебропротекторные свойства РА наиболее выражены при его раннем применении недоношенным н/р (в первые 12 ч).
- Системное антигипоксическое и антиоксидантное действие РА позволяет сократить продолжительность ИВЛ и снизить частоту осложнений, связанных с его применением.
- Применение РА достоверно снижает частоту возникновения ПВЛ у недоношенных н/р, нуждающихся в проведении ИВЛ и интенсивной терапии.

Буркова А.С, Антонов А.Г., Рогаткин С.О., Им В.Л. Эффективность применения цитофлавина в интенсивной терапии недоношенных новорожденных с церебральной ишемией Российский вестник перинатологии и педиатрии 2010.-N 1.-C.26-32.

В рамках многоцентрового рандомизированного контрольно-сравнительного исследования проведен анализ эффективности лечения церебральной ишемии П—III степени у 48 недоношенных новорожденных метаболическим нейропротектором цитофлавин. Основную группу составили 24 ребенка, получавших внутривенно цитофлавин из расчета 2 мл на 1 кг массы тела в сутки в течение первых 5 дней жизни; 24 недоношенным новорожденным группы сравнения проводилась базисная терапия. Использованные методы обследования: оценка неврологического статуса, состояния центральной и мозговой гемодинамики, нейросонография. В 1, 3, 6 мес скорригированного возраста детям оценивали психомоторное развитие с помощью стандартизированных психометрических шкал INFANIB и BSID. Установлено, что цитофлавин хорошо переносится недоношенными новорожденными, не имеет опасных побочных эффектов, оказывает системное антигипоксантное действие. Нейропротекторные свойства препарата подтверждаются достоверно более успешными по сравнению с контролем темпами психомоторного развития в течение 1-го года жизни у детей основной группы.

С.О. Рогаткин, Н.Н. Володин, М.Г. Дегтярева, О.В. Гребенникова, М.Ш. Маргания, Н.Д. Серова Современные подходы к церебропротекторной терапии недоношенных новорожденных в условиях отделения реанимации и интенсивной терапии. журнал неврологии и психиатрии 2011, №1, с. 26-31.

 Работа проводилась в рамках многоцентрового рандомизированного контрольносравнительного исследования.

На базе 4 исследовательских центров обследовали 304 ребенка, из которых 154 вошли в основную группу и 150 — в контрольную.

В данной работе представлен анализ результатов динамического наблюдения, лабораторноинструментального обследования и лечения 120 новорожденных детей. Срок гестации новорожденных варьировал от 28 до 36 нед, масса тела при рождении составила от 1060— 3150 г (1781,7±508,98 г), рост от 25 до 50 см (40,6±3,93 см). В зависимости от характера терапии, проводимой в раннем неонатальном периоде, в ходе исследования все пациенты были разделены на две группы — основную и контрольную. Рандомизация проводилась методом «конвертов».

В основную группу был включен 61 недоношенный новорожденный ребенок, которым наряду с базовой интенсивной терапией внутривенно медленно в течение первых 5 сут после рождения вводился цитофлавин в дозе 2 мл/кг/сут после разведения в 10% растворе глюкозы в соотношении 1:5. Скорость введения полученного раствора колебалась от 1 до 4 мл/ч. Препарат вводили параллельно с парентеральным питанием, с растворами, используемыми для коррекции водно-электролитного баланса и объема циркулирующей крови. Общая продолжительность курса лечения цитофлавином составила 5 сут. В контрольную группу были включены 59 недоношенных новорожденных детей, которым проводилась только необходимая базовая интенсивная терапия.

С.О. Рогаткин, Н.Н. Володин, М.Г. Дегтярева, О.В. Гребенникова, М.Ш. Маргания, Н.Д. Серова Современные подходы к церебропротекторной терапии недоношенных новорожденных в условиях отделения реанимации и интенсивной терапии. журнал неврологии и психиатрии 2011, №1, С. 26-31.

Для оценки эффективности проводимого лечения, наряду со стандартными методами клинико-инструментального и лабораторного мониторинга, использовали определение уровня нескольких нейроспецифических белков (GFAP, NSE, MBP) в сыворотке крови. Полученные результаты показали выраженный церебропротекторный эффект цитофлавина. В основной группе новорожденных, получавших цитофлавин, была отмечена достоверно более быстрая нормализация показателей КОС, рО₂, рСО₂ и устранение лактат-ацидоза, чему соответствовало снижение тяжести и частоты развития ишемических и геморрагических поражений ЦНС и достоверно более низкие уровни нейроспецифических белков в крови по сравнению с детьми контрольной группы.

БЛАГОДАРЮ ЗА ВНИМАНИЕ