Генетические аспекты атипичного гемолитико-уремического синдрома

главный внештатный акушергинеколог МЗ РСО-А, заместитель главного врача по акушерству и гинекологии ГБУЗ РКБ МЗ РСО-А

к.м.н. Гетоева З.К.

Гемолитико-уремический синдром (ГУС) серьезная проблема

- механическая гемолитическая анемия,
- тромбоцитопения

поражение почек. Shigella M cell Epithelial cells Activation of NF-kB caused by **IcsA** Cell-to-cell IL-1B and spread intracellular NLR activation **IpaB** type III Macrophages **IpaC** secretion IL-1B Disruption of epithelial permeability barrier by PMNs Macrophage apoptosis Caspase-I activation by IpaB Massive invasion of · Bacterial survival epithelium Initiation of inflammation IL-18

КЛАССИФИКАЦИЯ ВАРИАНТОВ ГУС

τ**ГУС** (90-95%)

STEC-ГУС (E. coli 0157:Н7 и др.)

Shigella dysenteriae I типа

ГУС, не ассоциированный с шигатоксином (5-10%)

SPA-ГУС (Streptococcus pneumoniae)

аГУС

Вторичный ГУС:

- аутоиммунные заболевания (системная красная волчанка, склеродермия, антифосфолипидный синдром);
- трансплантация костного мозга и солидных органов;
- злокачественные опухоли, химиотерапия;
- прием лексредств (хинина, циклоспорина А, такролимуса и др.);
- на фоне беременности, послеродовый период;
- злокачественная гипертензия;
- ВИЧ-инфекция.

Кобаламин С дефицитный ГУС (метилмалоновая ацидурия)

Атипичный ГУС

- обусловлен генетическими нарушениями или изменениями иммунной системы, приводящими к патологии системы комплемента (аГУС, ГУС-(D-)
- В его основе лежат мутации регуляторных белков системы комплемента (чаще всего аГУС ассоциирован с мутацией комплементарного фактора Н (СГН), на втором месте располагается мембранный кофакторный протеин (МСР), тройку замыкает комплементарный фактор I (СГІ))

КОМПЛЕМЕНТ (система комплемента) (от лат. complementum дополнение)

- Группа глобулярных белков сыворотки крови,
 представляющих собой часть иммунной системы организма
- При попадании в организм инфицирующих его бактерий или вирусов, некоторых токсинов или возникновении собственных трансформированных клеток происходит активация комплемента, в результате чего клеткимишени разрушаются, а токсины и вирусы нейтрализуются
- Систему комплемента рассматривают наряду с макрофагами

Регуляторные белки комплемента

- - фактор Н белок плазмы крови с молекулой удлиненной конфигурации;
- - <u>C4-связывающий белок (C4-bp binding protein)</u> гептамерный белок плазмы, молекула которого имеет паукообразную форму;
- - фактор, ускоряющий диссоциацию С3-конвертазы (DAF, ФУД, CD55), белок клеточной мембраны, закрепленный в ней на своеобразной гликофосфолипидной ножке;
- - мембранный кофакторный белок (МКБ, CD46) трансмембранный белок, действующий как кофактор расщепления C3b;
- - рецепторы комплемента типа 1 (CR1, CD35) и
- - рецепторы комплемента типа 2 (CR2, CD21) клеточные рецепторы, имеющие трансмембранные домены.
- Это семейство регуляторных белков комплемента кодирует группа тесно сцепленных генов, расположенных в хромосоме 1.
- Составляющие это семейство шесть белков выполняют ряд общих функций в активации комплемента: фактор H, C4- bp, ФУД, МКБ и CR1 подавляют образование комплексов C4b2a~ и C3Bb~, т.е. C3- конвертаз классического и альтернативного путей активации. Некоторые из этих белков имеют и другие общие функции, но не идентичные, а лишь частично перекрывающиеся.

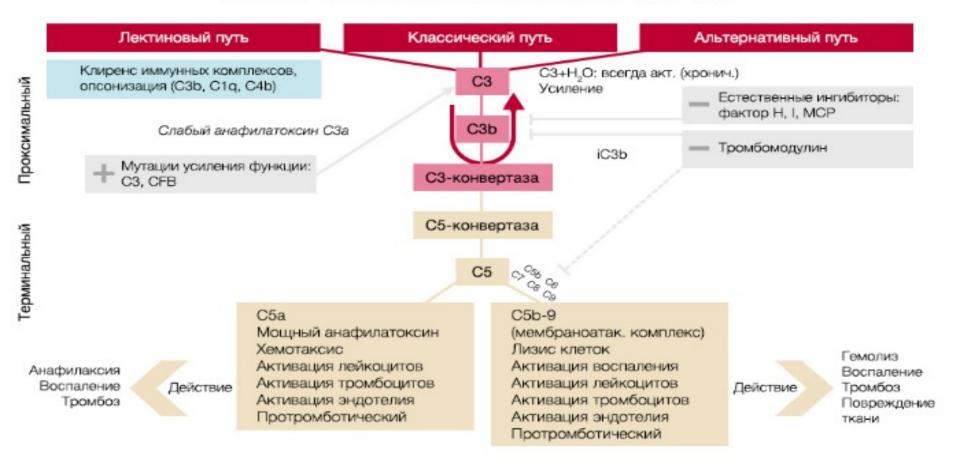
- Мутации в генах, кодирующих белки, регулирующие комплемент, фактор Н, мембранный кофакторный белок (МСР), фактор I или тромбомодулин, обнаружены у 20-30%, 5-15%, 4-10% и 3-5% пациентов соответственно,
- мутации в генах белков С3 конвертазы, С3 и фактора В – у 2-10% и 1-4% больных.
- Кроме того, у 6-10% пациентов имеются антитела к фактору Н.

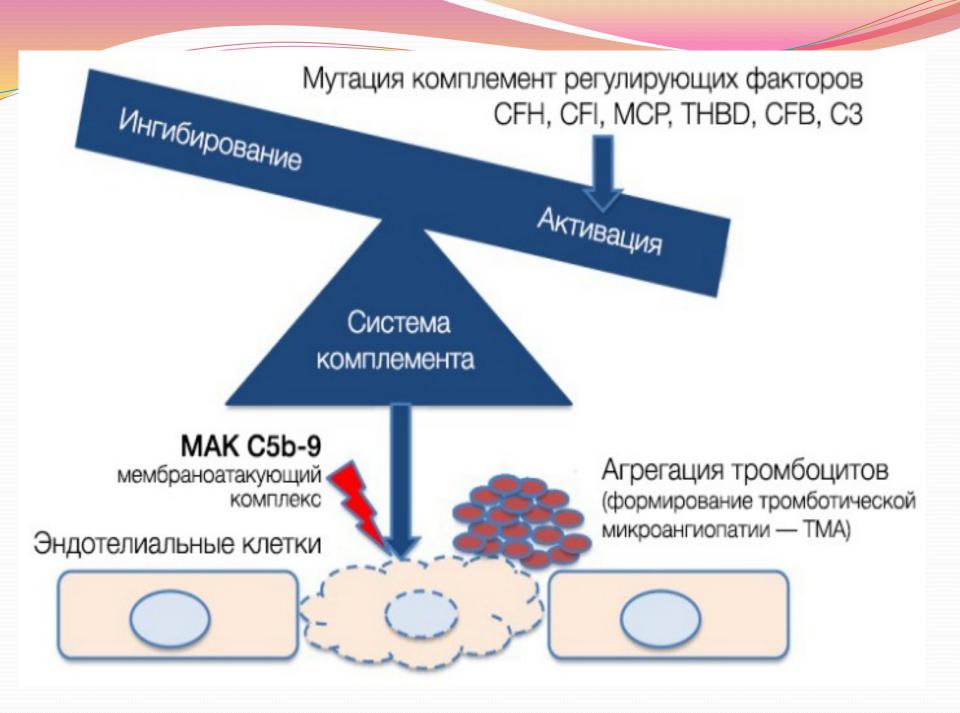
Частота аГУС

- На долю атипичного ГУС приходится 5-10% случаев ГУС у детей и большинство случаев ГУС у взрослых.
- Частота комплемент-ассоцированного аГУС точно неизвестна.
- описано более 1000 пациентов с аГУС, исследованных на нарушения комплемента.
- Атипичный ГУС может развиться как у новорожденных, так и у взрослых. У большинства пациентов возникают гемолитическая анемия, тромбоцитопения и почечная недостаточность и у 20% внепочечные проявления.
- От 2 до 10 % больных умирают, у одной трети развивается терминальная стадия почечной недостаточности в течение первого эпизода. У половины пациентов возникают рецидивы.

Патогенез аГУС

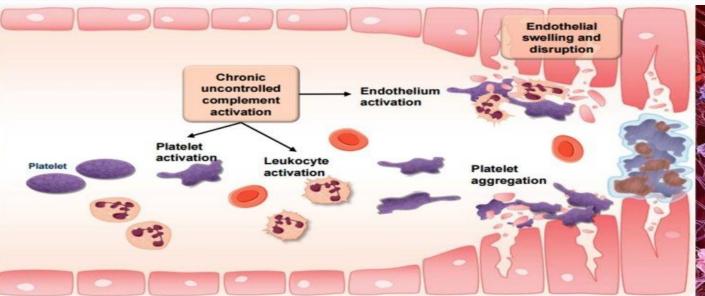
• При активации комплемента образуется С3конвертаза, расщепляющая С3 на малый (С3а) и большой (С3b) фрагменты, который и опсонизируется на поверхности микробной клетки и формирует мембраноатакующий комплекс (МАК), состоящий из С5b, С6, С7, С8 и С9, что приводит к осмотическому лизису этой клетки. Для того, чтобы активированная система комплемента не уничтожила собственные клетки, на их поверхности расположены белки-регуляторы (DAF и CR1); помимо этого, часть таких белков синтезируется в печени и циркулирует в плазме крови в неактивном состоянии.


Патогенез аГУС

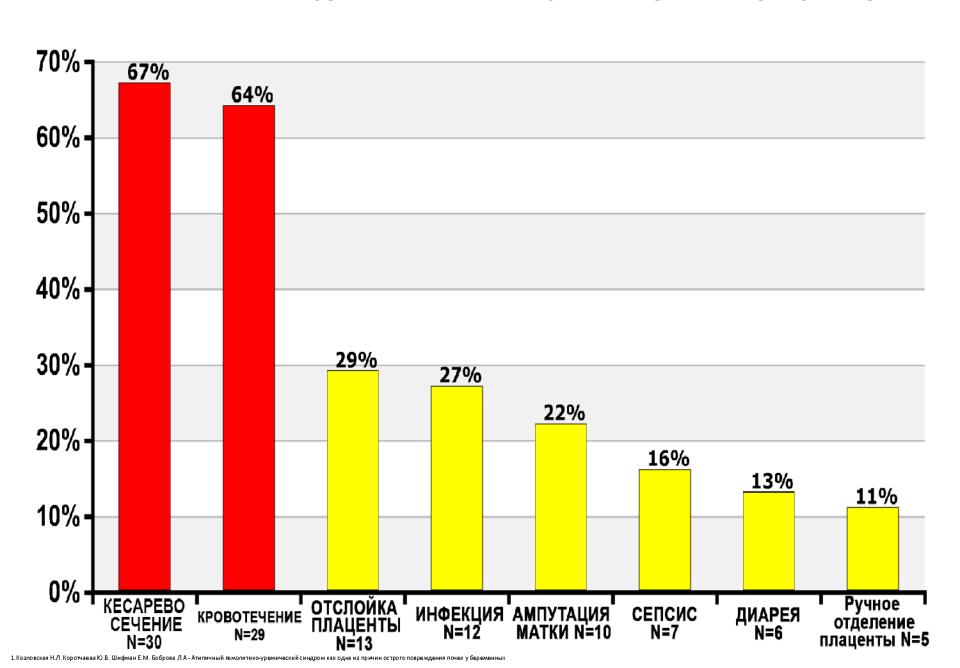

- К таким белкам относят комплементарный фактор Н (CFH), фактор I (CFI) и мембранный кофакторный протеин, закрепленный на поверхности клеток (CD46). Фактор I, главный из вышеперечисленных факторов, расщепляет С3b и С4b. Фактор Н и CD46 являются кофакторами фактора комплемента I.
- Первый из них связывается с гликозаминогликанами собственных клеток организма, отсутствующими на мембранах бактериальных клеток, а также ингибирует активность С3-конвертазы.
- При мутации данных регуляторных белков происходит утрата защиты эндотелиальных клеток от повреждения конечными продуктами активации альтернативного пути комплемента

первичное заболевание, вызванное нарушением альтернативного пути активации комплемента

Атипичный ГУС (аГУС) –


КАСКАД КОМПЛЕМЕНТА И ЕГО РОЛЬ В ПАТОГЕНЕЗЕ АТИПИЧНОГО ГУС




Диагноз аГУС основывается на следующих положениях:

- не ассоциирован с болезнью,
- нет критерия Шигатоксин-ассоциированного ГУС (культура кала и ПЦР для Шига-токсинов; серология на антитела к липополисахаридам),
- отсутствие критерия тромботической тромбоцитопенической пурпуры (активность ADAMTS 13 в сыворотке >10%).

Частота комплемент-активирующих состояний, предшествующих акушерскому аГУС¹

ДИФФЕРЕНЦИАЛЬНАЯ ДИАГНОСТИКА ГУС

Заболевание	Дифференциально-диагностические признаки
Типичный ГУС	 Положительный результат на STEC при бактериологическом исследовании кала или ректального мазка: посев на среды для выявления STEC (с сорбитолом для Е. coli O157:H7); выделение ДНК STEC в образцах фекалий; выявление в сыворотке антител к липополисахаридам наиболее распространенных серотипов STEC.
Сепсис	Высокие уровни СРБ, прокальцитонина, пресепсина.
Уремическая коагулопатия (при впервые выявленной терминальной ХПН)	 Гипорегенераторная анемия (количество ретикулоцитов в норме или снижено); отсутствие признаков гемолиза (нормальный уровень ЛДГ); уровни билирубина (в норме или несколько повышены); признаки хронической почечной недостаточности (задержка роста, костные деформации, уменьшение почек по данным УЗИ); хорошая переносимость азотемии.
ТТП (наследственная или приобретенная)	Дефицит ADAMTS-13, антитела к ADAMTS-13.
Нарушение метаболизма кобаламина (метилмало- новая ацидурия)	 Высокий уровень гомоцистеина и низкий — метионина в плазме крови; повышение уровня метилмалоновой кислоты в крови и моче; тяжелый метаболический ацидоз; мутации в гене ММАСНС.
SPA-ГУС	 Ложноположительная прямая проба Кумбса (выявление антиэритроцитарных антител); положительный рост культуры S. pneumoniae или выделение ДНК методом ПЦР (кровь, ликвор); экспресс-диагностика антигенов S. pneumoniae в моче; выявление антигена Томсена — Фриденрайха (для подтверждения нейроминидазной активности).
Атипичный ГУС	 Снижение С3-фракции комплемента крови при нормальном уровне С4; дефицит факторов Н, І, МСР (СD46) крови; повышение уровня антител к фактору Н; мутации генов, кодирующих белки системы комплемента (СFH, CFI, CFB, MCP, THBD, С3 и др.).
Аутоиммунные заболевания (системная красная волчанка, антифосфолипидный синдром)	 Антитела к двухспиральной ДНК; антинуклеарные антитела; антитела к кардиолипину; антитела к β2-гликопротеину I; волчаночный антикоагулянт.
вич	Положительные результаты иммуноблоттинга на ВИЧ-инфекцию.
Вторичный ГУС на фоне злокачественных новообразований, химиотерапии (митомицин, блеомицин, цисплатин, ингибиторы	

Вторичный ГУС на фоне злокачественных новообразований, химиотерапии (митомицин, блеомицин, цисплатин, ингибиторы VEGF), трансплантации, приема лекарственных средств (ингибиторы кальциневрина, тиклопидин, клопидогрел, интерферон, хинин и др.)

Лечение аГУС

- разработано только для атипичной формы ГУС. В настоящее время единственным допущенным до применения ингибитором системы комплемента является рекомбинантное моноклональное антитело против компонента комплемента С5.
- препарат блокирует расщепление С5 компонента комплемента (С5а провоспалительный, С5b протромботический компонент) и формирование на мембране собственных клеток МАК С5b-9.

Благодарю за внимание!

